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The spectrum of the characteristic surface oscillations and stability of a plasma in a strong
high-frequency (hf) electric field are studied. It is shown that inhomogeneity of the plasma
leads to spatial dispersion and to specific damping of stable oscillations of a plasma in an
external hf field, the frequency of which greatly exceeds the plasma frequency. A system~ -
atic theory of parametric resonance at the frequency of the electronic surface oscillations
is developed taking account of the inhomogeneity of the plasma,

1. The dispersion theory of surface waves of a plasma in a strong high-frequency (hf) field [1] has
been developed for the case of a homogeneous plasma with a sharp boundary, In actual experiments, the
approximation of a homogeneous plasma with a sharp boundary is not always justified. It is known [2, 3]
that inhomogeneity of the plasma has a significant influence on the spectrum of hf surface osecillations .
Thus, in the case where the characteristic dimension of an inhomogeneity near the plasma boundary great-
ly exceeds the Debye radius, the spatial dispersion and damping coefficient for hf surface waves is com-
pletely defined by plasma inhomogeneity effects. From the theory of parametric resonance in an unbounded
homogeneous plasma [4], it is known that for strong hf fields the occurrence of spatial dispersion of plasma
waves substantially changes the picture of plasma instabilities, Below, it is shown that analogous effects
also occur for parametric resonance at the frequency of hf surface waves in a bounded inhomogeneous
plasma. It is established that an aperiodic instability arises not only at a frequency of the external field
wy, lower than the frequency of the surface waves w,/ (1 + 50)1/2, but also for wy > w /(1 + 30)1/2. In addi-
tion, situations are possible in which the parametric instability is dissipative.

Besides studying the peculiarities of the parametric resonance, the present work also investigates
the influence of plasma inhomogeneities on the spectrum of unstable surface oscillations in an external hf
field,

2. We consider a plasma with density n(z) rapidly rising in a transition layer 0 < z <a and chang-
ing relatively slowly for z > a, so that the characteristic dimension of the inhomogeneity

L=0@lhn(@/0z])*>a.

For such conditions, in the plasma there exist weakly damped surface waves with wave vector Ky,
directed along the plasma boundary and satisfying [2, 3]

>k | > L7 2.1)

We assume that the external electric field vector is oriented along the plasma boundary. For suffi-
ciently large k), when the region of field localization of the surface wave (equal to 1/k“) is much less than
the penetration depth of the external field ¢/ (wp2 - w02)1/2, the latter may be considered homogeneous:

E =E  sinwgt,

The dispersion relations for the 1f (with frequency w « wy) and the hf (with frequency w * nwg) sur~
face waves in a strong hf field have the form
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Here € is the dielectric permeability of the medium surrounding the plasma: 8¢ gl)(z) is the con-

tribution of particles of type @ in the linear dielectric permeability of a cold plasma; J,, is the Bessel func-
tion of argument k|| T'p; and rp is the amplitude of electron oscillations in the hf field.

3. Using the dispersion relation (2.2),we first examine the spectra of the weakly damped surface
osmllatlons in the case of external fields with frequencies much greater than the plasma frequency, w p=
“ie 2a) + le 1/2. In this case there may exist both hf and If surface waves of frequency @ and damp-
ing coefficient y!' gwen by:
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For If oscillations, the frequency of which is significantly less than the plasma frequency, the follow-
ing must be used for w, and € (w, z):

o} (a)
=4~ ¢ (kyre)] s

L‘L(Z)

(0, 2) =1 —[1 —Jo*(kyrg)] ‘3.3)
while for hf oscillations they have the form
07, 0Fo(2)
w*2:—-—-——1l_‘}_80 ,  g(w,z)=1— gg . (3.9

To an accuracy of second order in the mass ratio of electrons to ions, the hf field does not change
the spectrum of the hf surface oscillations. Hence, the second and third terms in the curly brackets of
Eq. (3.1) and the damping factor [Eq, (3.2)] may be evaluated using the dispersion relation obtained by
Stepanov [3], and the last term of Eq. (3.1) corresponds to the correction considered by Romanov [2] for
plasma inhomogeneities in the absence of an hf field.

We note that the choice of the point @ bounding the transition layer is based only on condition (2 1),
For this, the expression for the frequency is independent of the choice of a in the region of slow density
change (@ « L) since everywhere in this region e (wy, z) ~ ~E 4.

4. As the frequency w, of the external field is decreased and its harmonic nw, approaches w, [Eq.
(3.4)] a parametric resonance is excited which leads to a growth rate y for If (with frequency w) and hf
(with frequencies w + nwg) surface oscillations. From Eq. (2.2) for this case we obtain

, o] 4(a) nwoA
i) = 25 T md) g Sy — O @

Here A = nw;— Q, where Q is defined by Egs. (3.1) and (3.4).



The dispersion relations 4.1 differ from those of [1] due to inclusion of small corrections to w x,
which determine the spatial dispersion of the hf surface waves, and also due to inclusion of damping of sur-
face oscillations. Such a difference may be important, as is shown in [4] for the case of a parametric res-
onance in an unbounded plasma,

We first consider the case of disturbances nw;— wy, for which, in the region of maximum damping
coefficient, the condition y > ¥ holds. In this case we obtain from Eq. (4.1) the following expression for
the spectrum of periodic instabilities

2 Y
o = % {M +2 [an (ky rg) nood :)i(zz ] } o
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and for the aperiodic (w = 0) instabilities

4.4
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From Eq. (4.3) it follows that the maximum value of the damping coefficient for the periodic insta-
bility found in {1},

V27 neno}(a) }‘/' (4.5)

Yoax = {(maxJ,0) oD

is attained near A = 2y 95/ V3. Considering that the surface oscillations in this case of a cold plasma
have spatial dispersion, we conclude that the maximum in Eq. (4.5), as found in [1], is valid over a relative-
1y wide range of frequencies of the external field consistent with v > ', For the case of an aperiodic in-
stability the maximum value of the damping coefficient,

naw? i(a) Ya
Tmax = [(max JR2) —25—1_’;—&—6] (4.6)

is obtained for A = ~yina«.

We note that the maximum value of the damping coefficient for an aperiodic instability [Eq. (4.6)] ex-
ceeds that for a periodic one [Eq. (4.5)]. Consequently, an aperiodic instability may completely define the
nonlinear parametric interaction even for frequencies of the external field w; > w W/ 1,

For given density profiles in the transition region (e g., a linear distribution) damping of surface
waves y' ~ wpk”a and simultaneous satisfaction of the conditions y > ¥' and kyrg ~ 1 is possible only
for sufficiently large external fields, ie., (rg/a) « (wo/’y max) -

For values of nw, — wy such that w,y <y, the solution of the dispersion relation (4.1) for a periodic
instability has the form

mi«;(”«) nweA

0}i(a) ’
rE)m‘m’ T :J,f (kHI’E) Li M—_— (4.7)

T+e [R+IPF
A>0 -

The corresponding damping coefficient for an aperiodic instability is

o = J* (ky

(D‘Zi(a) A LA
= 2 teure) T T @9
It should be noted that thermal motion has an insignificant effect on the spectrum of the above oscilla~
tions when the characteristic size of the inhomogeneity in the transition layer is large compared to the
Debye length. The opposite limiting case of an inhomogeneous plasma with a sharp boundary is discussed
in [5].

We note that the preceding discussion dealt with the case of surface waves of wavelength (1/k”) much
less than the thickness of the dielectric layers d, bounding the plasma. For an arbitrary ratio of these
lengths, it is necessary to substitute in the above equations the following:
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